Evaluation of the Bias in the Management of Patient’s Appointments in a Pediatric Office
Abstract
The application of Machine Learning algorithms must always take into account the objectives set within the project, the characteristics of the domain where the project will be carried out and the data available to use. Given this, it is essential before collecting data considered as representative of the problem to be solved, because otherwise there may be hidden biases in the data and these may solve a different problem from the one intended. In this context, the aim of this work is to apply a process based on the Gridding method that allows the analysis of the features of the data to be used. This process is applied to the historical data of a pediatric medical office where it is sought to implement an intelligent system that allows to predict the number of normal and over-shift appointments for a particular date and time, since it is desired to hire, when necessary, another pediatric doctor to assist in the care of patients.
Downloads
References
E. Alpaydin, Introduction to machine learning. MIT press, 2014.
T. M. Mitchell, Machine learning. McGraw-Hill, New York, 1997.
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine Learning: An Artificial Intelligence Approach. Springer, 1983.
L. Ljung, “Perspectives on system identification,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 7172–7184, 2008.
P. R. Cohen and E. A. Feigenbaum, The handbook of artificial intelligence, vol. 3. Butterworth-Heinemann, 2014.
R. Garcı́a Martı́nez, D. Pasquini, and M. Servente, Sistemas inteligentes. Nueva Librerı́a, 2003.
P. Domingos, “A few useful things to know about Machine Learning,” Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.
G. Bontempi, S. B. Taieb, and Y.-A. Le Borgne, “Machine learning strategies for time series forecasting,” in European business intelligence summer school, 2013, pp. 62–77.
E. A. R. Santoyo and J. A. L. González, “Comparación de predicción basada en redes neuronales contra métodos estadı́sticos en pronósticos de ventas,” Ingenierı́a Industrial. Actualidad y Nuevas Tendencias, vol. 4, no. 12, pp. 91–105, 2014.
J. Pérez Porto and A. Gardey, “Bias definition.” Available at https://definicion.de/sesgo/, 2010.
M. Vivanco, Muestreo estadı́stico. Diseño y aplicaciones. Editorial Universitaria, 2005.
N. Collins, “Artificial intelligence will be as biased and prejudiced as its human creators,” Pacific Standard, vol. 1, 2016.
K. Crawford, “Artificial intelligence’s white guy problem,” The New York Times, vol. 25, 2016.
C. Vegega, P. Pytel, and M. F. Pollo, “Método basado en el emparrillado para evaluar los datos aplicables para entrenar algoritmos de aprendizaje automático,” Desarrollo e innovación en ingeniería, pp. 106–137, 2017.
C. Vegega, P. Pytel, L. Straccia, and M. F. Pollo-Cattaneo, “Evaluation of the bias of student performance data with assistance of expert teacher,” in International conference on applied informatics, 2018, pp. 16–31.
S. Walczak, “An empirical analysis of data requirements for financial forecasting with neural networks,” Journal of management information systems, vol. 17, no. 4, pp. 203–222, 2001.
R. J. Hyndman, A. V. Kostenko, and others, “Minimum sample size requirements for seasonal forecasting models,” foresight, vol. 6, no. Spring, pp. 12–15, 2007.
S. J. Raudys and A. K. Jain, “Small sample size effects in statistical pattern recognition: Recommendations for practitioners,” IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 3, pp. 252–264, 1991.
D. R. Stockwell and A. T. Peterson, “Effects of sample size on accuracy of species distribution models,” Ecological modelling, vol. 148, no. 1, pp. 1–13, 2002.
E. Alpaydin, Machine learning: The new ai. MIT press, 2016.
T. M. Mitchell, The need for biases in learning generalizations. Department of Computer Science, Laboratory for Computer Science Research, 1980.
P. Domingos, The master algorithm: How the quest for the ultimate learning machine will remake our world. Basic Books, 2015.
W. I. Limited, “Beauty AI. First Beauty Contest Judged by Robots.” Available at http://beauty.ai/, 2015.
S. Levin, “Beauty Contest was Judged by AI and the Robots didn’t like Dark Skin.” 2016.
W. L. Perry, Predictive policing: The role of crime forecasting in law enforcement operations. Rand Corporation, 2013.
D. Robinson and L. Koepke, “Stuck in a pattern: Early evidence on ‘predictive policing’and civil rights,” Upturn report, pp. 1–29, 2016.
E. Edwards, “Predictive policing software is more accurate at predicting policing than predicting crime,” HUFFPOST POST, 2016.
R. Lloyd, “Critics say a predictive policing system could amplify racial bias in oakland.” OacklandNorth, 2016.
Northpointe, “Practitioner’s guide to compas core.” COMPAS Resources, 2015.
S. M. Angwin J. Larson, “There’s software used across the country to predict future criminals. And it’s biased against blacks.” ProPublica, 2016.
J. M. &. A. S. J. Trujillano, “Aproximación metodológica al uso de redes neuronales artificiales para la predicción de resultados en medicina.” Med Clin, Barc, 2004.
G. Kelly, The Psychology of Personal Construct. New York, Norton, 1955.
RAE, “Real académica española constructo.” Diccionario de la Lengua Espa, Edicidel Tricentenario.
F. Fransella, R. Bell, and D. Bannister, A manual for repertory grid technique. John Wiley & Sons, 2004.
R. Wolf and H. S. Delugach, “Knowledge acquisition via tracked repertory grids,” Computer Science Dept., Univ. Alabama in Huntsville, 1996.
D. Carrizo Moreno, “Comparación de efectividad de las técnicas de educción de requisitos software: Visión novel y experta,” Ingeniare. Revista chilena de ingenierı́a, vol. 20, no. 3, pp. 386–397, 2012.
M. Easterby-Smith, “The design, analysis and interpretation of repertory grids,” International Journal of Man-Machine Studies, vol. 13, no. 1, pp. 3–24, 1980.
P. Britos, B. Rossi, and R. Garcı́a Martı́nez, “Notas sobre didáctica de las etapas de formalización y análisis de resultados de la técnica de emparrillado. Un ejemplo,” in Proceedings del v congreso internacional de ingenierı́a informática, 1999, pp. 200–209.
P. E. Black, “Manhattan distance Dictionary of algorithms and data structures.” Available at https://xlinux.nist.gov/dads//HTML/manhattanDistance.html, 2006.
J. M. Bradshaw, K. M. Ford, J. R. Adams-Webber, and J. H. Boose, “Beyond the repertory grid: New approaches to constructivist knowledge acquisition tool development,” International Journal of Intelligent Systems, vol. 8, no. 2, pp. 287–333, 1993.
L. A. Saúl, M. A. López-González, A. Moreno-Pulido, S. Corbella, V. Compan, and G. Feixas, “Bibliometric review of the repertory grid technique: 1998–2007,” Journal of Constructivist Psychology, vol. 25, no. 2, pp. 112–131, 2012.
P. McGeorge and G. Rugg, “The uses of contrived knowledge elicitation techniques,” Expert Systems, vol. 9, no. 3, pp. 149–154, 1992.
S. Stumpf and J. McDonnell, “Using repertory grids to test data quality and expertsh́unches,” in 14th international workshop on database and expert systems applications, 2003. Proceedings., 2003, pp. 806–810.
S. Stumpf and J. McDonnell, “Data, information and knowledge quality in retail security decision making,” in Proceedings of i-know, 2003, vol. 3, pp. 2–4.
R. Rakotomalala, “Tanagra: data mining software for academic and research purposes,” Actes de EGC, pp. 697–702, 2005.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Parallel Distributed Processing, vol. 1, 1986.
H.-N. Robert and others, “Theory of the backpropagation neural network,” Proc. 1989 IEEE IJCNN, vol. 1, pp. 593–605, 1989.
H. Heidenreich, “NEAT: An Awesome Approach to NeuroEvolution.” https://towardsdatascience.com/neat-an-awesome-approach-to-neuroevolution-3eca5cc7930f?gi=fb4832b83f34, 2019.
Copyright (c) 2020 ParadigmPlus
This work is licensed under a Creative Commons Attribution 4.0 International License.