Ultra-short heart rate variability and Poincaré plots
Abstract
The short-term heart rate variability records of 5 minutes are currently considered very extensive compared to other indicators of health and well-being of people, such as body weight, blood glucose, blood pressure, etc. To find records of indicators less than 5 minutes, ultra-short heart rate variability, equivalent to the short-term heart rate variability, samples registers of 5 minutes is used to extract SS (stress score index) and S / PS (sympathetic/parasympathetic ratio) from the Poincaré diagram and correlate with the time and frequency domain of a group of subjects. To do this, the electrocardiographic signals were recorded for 300 seconds at rest then, the cardiotachograms (RR series) were calculated and used as a gold standard, and cardiotachogram were also calculated at intervals of 60, 90, 120, 180, and 240 seconds to perform the analysis of concordance with the gold standard. We use concordance analysis: Spearman, Bland, and Altman correlation, and Cliff's delta. This study set out to, that the indicator S/PS -- proposed for the analysis of the autonomic balance -- could be regarded as an alternative for traditionally be used LF/HF (Low Frequency / High Frequency) of the frequency domain or SD21 (SD2 / SD1) of the graphic Poincaré domain. In addition, the SS times within records of 120 seconds, were equivalent to those of short-term HRV and S/PS of 90 seconds. This finding, while preliminary, suggests that a reduction in measurement times will make it possible to increase the use of heart rate variability analysis. In future investigations, it might be possible to use these indicators in different populations and use of different pre-processing methods.
Downloads
References
M. Malik, Heart Rate Variability, 1st ed. New York: Futura Publishing Company Inc., 1995, p. 543.
C. R. Bellenger, J. T. Fuller, R. L. Thomson, K. Davison, E. Y. Robertson, and J. D. Buckley, “Monitoring Athletic Training Status Through Autonomic Heart Rate Regulation: A Systematic Review and Meta-Analysis,” Sport. Med., vol. 46, no. 10, pp. 1461–1486, 2016, doi: 10.1007/s40279-016-0484-2.
S. Jiménez Morgan and J. A. Molina Mora, “Effect of Heart Rate Variability Biofeedback on Sport Performance, a Systematic Review,” Appl. Psychophysiol. Biofeedback, vol. 42, no. 3, pp. 235–245, 2017, doi: 10.1007/s10484-017-9364-2.
J. Gallardo, G. Bellone, S. Plano, D. Vigo, and M. Risk, “Heart Rate Variability: Influence of Pre-processing Methods in Identifying Single-Night Sleep-Deprived Subjects,” J. Med. Biol. Eng., pp. 1–7, 2021, doi: 10.1007/s40846-020-00595-8.
M. A. Maggioni, L. C. Rundfeldt, H. C. Gunga, M. Joerres, G. Merati, and M. Steinach, “The Advantage of Supine and Standing Heart Rate Variability Analysis to Assess Training Status and Performance in a Walking Ultramarathon,” Front. Physiol., vol. 11, no. July, 2020, doi: 10.3389/fphys.2020.00731.
M. Risk, J. Sobh, R. Barbieri, R. Armentano, A. Ramirez, and J. Saul, “Variabilidad de las señales cardiorespiratorias. Parte 2: Variabilidad a largo plazo,” Rev. Argentina Bioingenieria, vol. 2, no. 2, 1996.
M. Risk, J. Sobh, R. Barbieri, R. Armentano, A. Ramirez, and J. Saul, “Variabilidad de las señales cardiorespiratorias. Parte 1: Variabilidad a corto plazo,” Rev. Argentina Bioingenieria, vol. 2, no. 1, 1996.
L. G. Gamero, M. Risk, J. F. Sobh, A. J. Ramirez, and J. P. Saul, “Heart rate variability analysis using wavelet transform,” Comput. Cardiol., vol. 0, no. 0, pp. 177–180, 1996, doi: 10.1109/cic.1996.542502.
M. Risk, V. Bril, C. Broadbridge, and A. Cohen, “Heart Rate Variability Measurement in Diabetic Neuropathy: Review of Methods,” Diabetes Technol. Ther., vol. 3, no. 1, pp. 63–76, 2002, doi: 10.1089/152091501750220028.
F. Shaffer, S. Shearman, and Z. M. Meehan, “The Promise of Ultra-Short-Term (UST) Heart Rate Variability Measurements,” Biofeedback, vol. 44, no. 4, pp. 229–233, 2016, doi: 10.5298/1081-5937-44.3.09. [Online]. Available: http://www.aapb-biofeedback.com/doi/10.5298/1081-5937-44.3.09
S. Massaro and L. Pecchia, Heart Rate Variability (HRV) Analysis: A Methodology for Organizational Neuroscience, vol. 22. Sagepub, 2019, pp. 354–393.
P. Laguna, G. B. Moody, and R. G. Mark, “Power spectral density of unevenly sampled data by least-square analysis: Performance and application to heart rate signals,” IEEE Trans. Biomed. Eng., vol. 45, no. 6, pp. 698–715, 1998, doi: 10.1109/10.678605.
B. S. Saini, D. Singh, M. Uddin, and V. Kumar, “Improved Power Spectrum Estimation for RR-Interval Time Series,” Int. J. Electr. Comput. Energ. Electron. Commun. Eng., vol. 2, no. 10, pp. 154–158, 2008.
J. Camm, “Guidelines Heart rate variability,” Eur. Heart J., vol. 17, pp. 354–381, 1996, doi: 10.1161/01.CIR.93.5.1043. [Online]. Available: http://www.mendeley.com/research/guidelines-heart-rate-variability-2/
U. Bracale, M. Rovani, M. Bracale, G. Pignata, F. Corcione, and L. Pecchia, “Totally laparoscopic gastrectomy for gastric cancer: Meta-analysis of short-term outcomes,” Minim. Invasive Ther. Allied Technol., vol. 21, no. 3, pp. 150–160, 2012, doi: 10.3109/13645706.2011.588712. [Online]. Available: https://doi.org/10.3109/13645706.2011.588712
N. Orellana, J. N. Orellana, B. De La Cruz Torres, E. S. Cachadiña, M. De Hoyo, and S. D. Cobo, “" Two New Indexes for the Assessment of Autonomic Balance in Elite Soccer Players " Article Title: Two New Indexes for the Assessment of Autonomic Balance in Elite Soccer Players,” Int. J. Sport. Physiol. Perform. J. Int. J. Sport. Physiol. Perform., pp. 452–457, 2014, doi: 10.1123/ijspp.2014-0235. [Online]. Available: http://dx.doi.org/10.1123/ijspp.2014-0235
L. Sathyapriya, L. Murali, and T. Manigandan, “Analysis and detection R-peak detection using Modified Pan-Tompkins algorithm,” in Proc. 2014 IEEE int. Conf. Adv. Commun. Control comput. Technol. ICACCCT 2014, 2015, vol. 978, pp. 483–487, doi: 10.1109/ICACCCT.2014.7019490.
J. McNames, T. Thong, and M. Aboy, “Impulse rejection filter for artifact removal in spectral analysis of biomedical signals.” Proc. 26th Annu. Int. Conf. IEEE EMBS, San Fr. CA, USA, vol. 1, pp. 145–8, 2004, doi: 10.1109/IEMBS.2004.1403112. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/17271626
R. A. Thuraisingham, “Preprocessing RR interval time series for heart rate variability analysis and estimates of standard deviation of RR intervals,” Comput. Methods Programs Biomed., vol. 83, no. 1, pp. 78–82, 2006, doi: 10.1016/j.cmpb.2006.05.002.
D. Wejer, D. Makowiec, Z. R. et. al. Struzik, and M. Żarczyńska-Buchowiecka, “Impact of the Editing of Patterns with Abnormal RR intervals on the Assessment of Heart Rate Variability,” Acta Phys. Pol. B, vol. 45, no. 11, p. 2103, 2014, doi: 10.5506/APhysPolB.45.2103. [Online]. Available: http://www.actaphys.uj.edu.pl/vol45/abs/v45p2103
A. E. Aubert, D. Ramaekers, and F. Beckers, “Analysis of heart rate variability in unrestrained rats. Assessment of method and results.” Med. Biol. Eng. Comp., vol. 60, pp. 197–213, 1999.
M. P. Tulppo, T. H. Makikallio, T. E. S. Takala, T. Seppanen, and H. V. Huikuri, “Analysis of Heart Rate Dynamics During Exercise,” Am. J. Physiol. Circ. Physiol., pp. 244–252, 1996.
P. Guzik et al., “Correlations between the Poincaré Plot and Conventional Heart Rate Variability Parameters Assessed during Paced Breathing,” J. Physiol. Sci., vol. 57, no. 1, pp. 63–71, 2007, doi: 10.2170/physiolsci.RP005506. [Online]. Available: http://joi.jlc.jst.go.jp/JST.JSTAGE/physiolsci/RP005506?from=CrossRef
L. Pecchia, R. Castaldo, L. Montesinos, and P. Melillo, “Are ultra-short heart rate variability features good surrogates of short-term ones? State-of-the-art review and recommendations,” Healthc. Technol. Lett., vol. 5, no. 3, pp. 94–100, 2018, doi: 10.1049/htl.2017.0090. [Online]. Available: http://digital-library.theiet.org/content/journals/10.1049/htl.2017.0090
J. M.Bland and D. G.Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet, vol. 1, no. 8476, pp. 307–310, 1986 [Online]. Available: https://www-users.york.ac.uk/{~}mb55/meas/ba.pdf
N. Cliff, Ordinal Methods for Behavioral Data Analysis, 1st ed. Psychology Press, 2014 [Online]. Available: https://www.taylorfrancis.com/books/9781315806730
M. Nardelli, A. Greco, J. Bolea, G. Valenza, E. P. Scilingo, and R. Bailon, “Reliability of Lagged Poincaré Plot parameters in ultra-short Heart Rate Variability series: Application on Affective Sounds,” IEEE J. Biomed. Heal. Informatics, vol. 2194, no. c, pp. 1–1, 2017, doi: 10.1109/JBHI.2017.2694999. [Online]. Available: http://ieeexplore.ieee.org/document/7903605/
M. L. Munoz et al., “Validity of (Ultra-)Short recordings for heart rate variability measurements,” PLoS One, vol. 10, no. 9, pp. 1–15, 2015, doi: 10.1371/journal.pone.0138921.
F. Shaffer and J. P. Ginsberg, “An Overview of Heart Rate Variability Metrics and Norms,” Front. Public Heal., vol. 5, no. September, pp. 1–17, 2017, doi: 10.3389/fpubh.2017.00258. [Online]. Available: http://journal.frontiersin.org/article/10.3389/fpubh.2017.00258/full
J. Piskorski and P. Guzik, “Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults,” Physiol. Meas., vol. 28, no. 3, pp. 287–300, 2007, doi: 10.1088/0967-3334/28/3/005.
C. H. Hsu et al., “Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction,” Acta Anaesthesiol. Taiwanica, vol. 50, no. 1, pp. 12–18, 2012, doi: 10.1016/j.aat.2012.03.002. [Online]. Available: http://dx.doi.org/10.1016/j.aat.2012.03.002
X. Chen, R. Yao, G. Yin, and J. Li, “Consecutive ultra-short-term heart rate variability to track dynamic changes in autonomic nervous system during and after exercise.” Physiol. Meas., vol. 38, no. 7, pp. 1384–1395, 2017, doi: 10.1088/1361-6579/aa52b3.
R. A. Hoshi, C. M. Pastre, L. C. M. Vanderlei, and M. F. Godoy, “Poincaré plot indexes of heart rate variability: Relationships with other nonlinear variables,” Auton. Neurosci. Basic Clin., vol. 177, no. 2, pp. 271–274, 2013, doi: 10.1016/j.autneu.2013.05.004. [Online]. Available: http://dx.doi.org/10.1016/j.autneu.2013.05.004
G. Ernst, “Heart-Rate Variability—More than Heart Beats?” Front. Public Heal., vol. 5, no. September, pp. 1–12, 2017, doi: 10.3389/fpubh.2017.00240.
J. M. Gallardo, G. Bellone, R. Acevedo, and M. Risk, “Ultra-short-term heart rate variability analysis: comparison between Poincare and frequency domain methods,” IEEE Lat. Am. Trans., vol. 20, no. 1, pp. 180–188, 2022, doi: 10.1109/TLA.2022.9662187.
J. Gallardo, G. Bellone, and M. Risk, “Heart rate variability: Validity of autonomic balance indicators in ultra-short recordings,” in International conference on applied informatics, 2021, pp. 303–315.
J. M. Gallardo and L. N. Siri, “Simulador de cardiotacogramas para validación de análisis en variabilidad de la frecuencia cardı́aca,” Mecánica Computacional, vol. 30, no. 44, pp. 3403–3412, 2011.
Copyright (c) 2021 ParadigmPlus
This work is licensed under a Creative Commons Attribution 4.0 International License.