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Abstract

Efficient emergency response systems are crucial for smart cities. However, their implementa-
tion is highly challenging, particularly in regions like Chad where infrastructural constraints are
prevalent. The urgency for optimized response times and resource allocation in emergency sce-
narios is magnified in these contexts, yet existing solutions often assume robust infrastructure and
uninterrupted connectivity, which is not always available. Most of the time, they are based on sys-
tem architectures pre-designed for other purposes. This paper addresses these critical challenges
by proposing a comprehensive system architecture that integrates Field Programmable Gate Ar-
rays (FPGAs), Dijkstra’s algorithm, and Edge Computing. The objective is to enhance emergency
response through accelerated route planning and resource allocation, addressing gaps left by tra-
ditional cloud-based systems. Methodologically, key characteristics of the desired system are iden-
tified, then its components are described and their integration is explained; the system leverages
FPGA-based computations and a distributed implementation of Dijkstra’s algorithm to compute
the shortest paths rapidly, while Edge Computing ensures decentralized and resilient processing.
A theoretical analysis highlights promising improvements in response times and resource manage-
ment. The proposed system architecture not only enhances emergency response efficiency but is
also adaptable to infrastructural constraints of Chadian-like environments.
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1 Introduction
In the contemporary urban landscape, the evolution of smart cities promises heightened efficiency
and enhanced quality of life [1]. Central to this vision is the optimization of various urban systems,
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including emergency response services [2, 3]. Efficient emergency response systems are critical, par-
ticularly within the context of smart cities where population density and infrastructural complexity
magnify the risks and impacts of emergencies [4]. Rapid and effective response to emergencies can
significantly mitigate the adverse effects of disasters, saving lives and reducing economic losses.

However, traditional emergency response systems often struggle to meet the demands of these
modern urban environments [5]. These systems typically rely on centralized cloud computing, which
can introduce latency and dependency on continuous network connectivity [6]. This reliance be-
comes particularly problematic in regions like Chad, where infrastructure limitations, geographic
constraints, and socioeconomic factors present unique hurdles. For instance, frequent network in-
terruptions and limited bandwidth can severely hamper the effectiveness of cloud-based solutions
in real-time emergency scenarios. Additionally, existing solutions often neglect the optimization of
emergency response times and resource allocation, particularly through advanced computational
techniques and hardware acceleration. For example, in the event of a natural disaster, it is very com-
mon for emergency services to arrive either very late or not at all. This delay may result from late
alerts, suboptimal route planning, or complete failures in the alert system [6].

The efficacy of emergency response systems is contingent upon factors such as time efficiency,
resource allocation, and usability within Chadian-like contexts. Existing works often falter in ad-
dressing these imperatives adequately. The delay in response times, inefficient resource allocation,
and the inability to function effectively under suboptimal network conditions underscore the need
for innovative and contextually relevant solutions. Motivated by these gaps, this paper proposes a
novel system architecture specifically designed to address the critical needs of emergency response
in smart cities, with a particular focus on Chadian-like environments. The proposed architecture in-
tegrates Field Programmable Gate Arrays (FPGAs), Dijkstra’s algorithm, and Edge Computing to
enhance emergency response efficiency. The primary contribution of this work is developing a be-
spoke system architecture that leverages FPGA technology to accelerate the execution of Dijkstra’s
algorithm for rapid route planning and resource optimization. This approach ensures that the most
efficient routes are identified swiftly, even in complex urban environments. The proposed architec-
ture implements Edge Computing to decentralize computational resources, thereby enhancing re-
sponsiveness and resilience to network disruptions. By processing data closer to the source, edge
computing reduces latency and dependency on central cloud infrastructure, making the systemmore
robust against connectivity issues. In addition, the proposed architecture takes into account the fact
that network connectivity may not be good and therefore makes proper use of cache memories to
promote and accelerate offline calculations. All the components of the architecture are described
and the key algorithms are presented. By addressing these aspects, the proposed architecture aims
to set a new benchmark for emergency response systems in smart cities, particularly those with in-
frastructural challenges similar to Chad. The integration of advanced computational techniques and
decentralized processing represents a significant advancement over traditional systems, promising
improved efficiency, reliability, and adaptability in emergency situations.

The present document is organized as follows: Section 2 reviews current work addressing emer-
gency service response in smart cities and discusses the performance of FPGA boards in computing.
Section 3 presents this paper’s contribution by describing the proposed system architecture, detail-
ing its core components, and discussing the FPGA-based implementation of Dijkstra’s algorithm. A
discussion highlights the strengths and weaknesses of the proposed architecture. Finally, Section 4
concludes the paper.
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2 Literature review

2.1 Overview of smart cities and emergency response systems

A smart city is a collective endeavor leveraging communication and information technology to en-
hance sustainability, livability, and viability. Like any community, it inevitably encounters unfore-
seen emergencies demanding prompt attention to maintain normalcy. Yet, a sophisticated system is
imperative to swiftly and efficiently address such emergent challenges [7]. Numerous studies have
delved into this domain. For instance, researchers in [8] have delved into potential challenges con-
fronting smart cities, advocating for a proactive disaster preparedness blueprint to fortify all aspects
of smart city infrastructure against disasters and fire hazards. Similarly, [9] has scrutinized various
facets pertinent to urban dwellers in smart cities, including emergency responsiveness, while promot-
ing strategic planning to fortify the resilience of smart cities. Additionally, [10] has examined emer-
gent systems in smart cities, focusing on real-time and distributed emergency resource management.
They propose optimizing resource allocation using the Hierarchy Particle SwarmOptimization Algo-
rithm (HPSO) to enhance resource quality and minimize costs and time. Moreover, they propose an
emergency architecture comprising distinct layers: resource, network, sensing, smart service, and ap-
plication. The research outlined in [6] presents sensor-based detection of emergency, and highlighted
a critical consideration regarding emergency detection is the level of reliability inherent in the entire
process, which can be associated with various challenges. Firstly, sensor failures may occur, imped-
ing the prompt identification of emergencies. Additionally, network failures may also arise, resulting
in delays or outright prevention of emergency alert dissemination. In such instances, to enhance
the expected quality of detection when utilizing sensor node networks, several strategies can be em-
ployed, including sensor redundancy, transmission reliability, and fault tolerance in sensor networks.
Palmieri et al. [11] propose a hybrid cloud architecture designed to oversee computing and storage
resources essential for command and control operations during emergency situations. The architec-
ture is supplemented by a pioneering first responder localization service that integrates signals from
landmarks positioned by first responders at the crisis site with data gathered from motion sensors,
offering a comprehensive positioning approach. In [12], authors propose a systematic methodology
centered on text mining to review several approaches on smart technologies during emergencies.
Their research identified the following three themes: (a) emergency response, which encompasses
emergency management, traffic and unmanned aerial vehicles, waste disposal, and contact tracing;
(b) motivation and outcome, which includes sub-themes such as smart urbanism, quality of life, and
the economy; and (c) technology and data, which covers social media, machine learning, the Internet
of Things, data-driven applications, and object detection. Research in [13] aimed to address the need
for Smart Cities to evaluate technologies and tools for disaster resilience, enabling them to wisely uti-
lize resources and prioritize the most suitable options for their specific needs. The study identified 24
technologies and tools to create, sustain, and enhance resilience within Smart Cities. It emphasized
the importance of collecting and managing citywide geodata and fostering public participation. The
study identified four key factors for assessing these technologies: their impact on society, adoption
speed by Smart Cities, maturity of the technology, and the capabilities offered to the community.

In the landscape of research pertaining to emergency response systems, there exists a notable
gap in addressing the unique challenges posed by regions with limited infrastructure, exemplified
by environments akin to that of Chad. As illustrated by the few presented studies above, previ-
ous studies have predominantly favored architectures reliant on cloud-based infrastructure or have
operated under the assumption of uninterrupted network connectivity, overlooking the realities of
resource-constrained settings. Furthermore, while incident response time is a critical factor in emer-
gency scenarios, existing literature has largely neglected to explore methodologies for optimizing
response times through the refinement of shortest path algorithms and the optimization of hardware
resources responsible for executing these computations at the same time. This paper’s research is thus
positioned to bridge these gaps by proposing an innovative solution tackling the specific demands of
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resource-constrained environments as first-class citizen. By developing strategies that leverage local-
ized computing resources and prioritize efficient algorithms, we aim to enhance the effectiveness and
timeliness of emergency response operations in contexts where traditional approaches fall short.

2.2 Field Programmable Gate Arrays (FPGAs) computing capabilities
A Field Programmable Gate Array (FPGA) is a type of semiconductor device that is capable of be-
ing programmed to execute various digital functions across a broad spectrum [14]. It comprises an
array of programmable logic blocks and interconnections, allowing for the configuration to create
personalized digital circuits [15]. Unlike micro-controllers, which have fixed hardware and execute
instructions sequentially, FPGAs can be reprogrammed to perform various tasks by modifying their
internal connections and logic [16]. The core functionality of FPGA technology is rooted in adaptive
hardware, possessing the distinctive capability of being modified after manufacturing [14]. Arrays
of configurable hardware blocks can be interconnected as required, enabling the creation of highly
efficient, domain-specific architectures for any application [16]. FPGAs enable the parallel processing
of numerous tasks, which proves particularly advantageous and efficient when dealing with exten-
sive datasets. Sorting, filtering, and decimation operations are executed more effectively, freeing up
primary processors to concentrate on signal processing algorithms [17]. In recent years, a number
of studies like the ones of Benaicha et al. [18] and Salim et al. [19] have shown how it is possible to
replace conventional processors with FPGA boards in order to increase computing speed. FPGAs are
known for their ability to execute operations in parallel [20, 21], which can be exploited in path finding
and Dijkstra’s algorithm. Ivan Fernandez et al. [22] proposed the computation of Dijkstra algorithm
for each node of a graph in order to get the minimum distance from each node to any other node
in that graph. Assuming that the graph has n nodes, their proposed FPGA architecture considers n
node processors; each node processor has 4 memories where it can read data concerning the graph
and will compute the Dijkstra’s algorithm for each node. However, this solution becomes useless
when the graph has a large number of nodes and the usage of memory inside the FPGA component
is not good in terms of scalability and execution speed. Guoqing et al [23] proposed an architecture
with the same idea; meaning the computation of Dijkstra algorithm for each node of the graph in
order to get the minimum distance from each node to any other node in the graph. However, their
solution is built for large graphs with a lot of nodes. Authors use priority queue to store all the nodes,
and the Graph Processing Engines (GPEs) to compute the Dijkstra algorithm for each node. Let n
be the number of available GPEs. At each iteration, authors use the Dijkstra management module to
remove n nodes in the priority queue and send each node to a distinct GPE, which compute Dijkstra
algorithmwith the received node as source node. Unfortunately, authors did not integrate cashmem-
ory and every time, the Dijkstra algorithmmust be computed for all the nodes. In [24], Yanping et al.
propose a solution for evacuating a building using the shortest path in the event of a fire. They pro-
pose an architecture where, In the event of a fire in a building, the IoT nodes send information to the
edge server (in the building) about the location of the fire. The edge server runs Dijkstra’s algorithm
on its FPGA board, taking the location of the fire as the source of the graph in order to indicate the
nearest outputs. Unfortunately, Dijkstra’s algorithm is executed sequentially, so the authors do not
take advantage of the parallelism offered by FPGA boards. This results in a slow execution of the Di-
jkstra algorithm when the number of nodes is very high. Mengqing et al. proposed in [25] a solution
to parallelize Dijkstra algorithm using several processors. The idea is to split the adjacency matrix
representing the graph into p sub-matrices (p is the number of processors); and consider the same
node u as the source for each sub-matrix for each processor. At the end of each iteration, the resulting
nodes V1, V2,. . . , Vp are compared and the Vi with the minimal distance is considered and given to
the p processors for the next iteration. In [26] authors introduce an optimization approach for cal-
culating the shortest path in mobile robot route planning, specifically targeting real-time processing
requirements with a high-performance solution. The approach utilizes an architecture embedded in
dedicated hardware that emphasizes parallelism. By improving parallel exploration techniques, their
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solution not only boosts performance but also dynamically adapts to graph changes, accommodating
random edge insertions or deletions as environmental conditions fluctuate. They present the devel-
oped architecture and its results, demonstrating efficient updates of obstacle matrices, resulting in a
remarkable 120-fold improvement for 1024-node graphs.

The presented FPGA-based works collectively illustrate the significant potential of FPGA tech-
nology in optimizing computational tasks, particularly for Dijkstra’s algorithm. These works have
demonstrated impressive improvements in computing speed through the parallel processing capa-
bilities of FPGAs. However, despite these advancements, several limitations remain. Many of these
solutions struggle with scalability and memory usage, making them less practical for large graphs.
Additionally, the lack of integrated cache memory necessitates repeated computations, which under-
mines efficiency. Sequential execution in some approaches fails to fully exploit the inherent paral-
lelism of FPGAs, resulting in slower performance when dealing with extensive node networks. Fur-
thermore, these studies generally overlook the benefits of offline computing through cache memory
integration and the advantages of edge computing. The absence of edge computing in these ap-
proaches means they do not leverage decentralized resources to enhance responsiveness and reduce
reliance on continuous network connectivity. Addressing these gaps by integrating FPGA capabilities
with edge computing and cache memory is particularly compelling for Chadian-like contexts, where
infrastructure limitations and unreliable network connectivity demand innovative and resilient solu-
tions. This integration could providemore robust, efficient, and scalable emergency response systems
tailored to the unique challenges of such environments.

2.3 Edge computing in smart cities

Edge computing is an emerging computing paradigmwhich refers to a range of networks and devices
at or near the user [5]. Edge is about processing data closer to where it’s being generated, enabling
processing at greater speeds and volumes, leading to greater action-led results in real time [27]. With
edge computing, it is possible to minimise the bandwidth requirements between IoT objects and data
processing centres by undertaking analyses as close as possible to the data sources, and it also avoids
the transmission of large amounts of irrelevant data to data centres or the cloud, bringing fluidity
and speed of reaction. Edge computing increases the reliability and resilience of smart city systems.
By distributing computing resources to edge devices, critical services can continue to operate locally
in the event of network disruptions or cloud outages [28]. Efficient disaster response relies on tech-
nology that facilitates prompt collection and analysis of data from various disaster sites within the
affected region. For example, [29] proposed an emergency priority system to save live by giving
right of way green signal to emergency vehicles such as ambulances and fire engines. The paper pro-
poses an optimal control strategy for Emergency Vehicle Priority (EVP) using edge computing and
IoT sensors for smart cities. The experiment utilized a GPS-based IoT sensor that continuously sends
Location Information (LI) to the edge server. The edge server calculates the optimal timings using
the proposed control strategy algorithm to clear the path for emergency vehicles.

The work in this paper leverages the advantages of edge computing to address critical limitations
observed in existing FPGA-based solutions for emergency response optimization. By integrating edge
computing, we decentralize computational resources, enabling real-time processing and reducing de-
pendency on continuous network connectivity. Edge computing allows for localized data processing,
ensuring that critical computations, such as the execution of Dijkstra’s algorithm for route planning,
can be performed efficiently and promptly at the edge of the network. This reduces latency and en-
hances the overall responsiveness of the system. Furthermore, the proposed architecture incorporates
cache memory to store and reuse computed paths, thereby minimizing redundant calculations and
improving efficiency.
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3 Proposed system architecture
In the realm of urban emergency response systems, the imperative for swift, efficient, and tailored
solutions has become more pressing, especially within the dynamic landscape of smart cities. Recog-
nizing the pivotal role of technology in meeting these demands, this paper’s contribution focuses on
the development of a novel system architecture that addresses the core challenges inherent in emer-
gency response, particularly within Chadian-like contexts. The architecture is designed with a keen
emphasis on three fundamental issues: time efficiency, resource allocation and usability in Chadian-like
contexts.
Time efficiency: Acknowledging the criticality of rapid response times in emergency situations, the
proposed architecture prioritizes streamlined processes and optimizedworkflows tominimize delays
and enhance overall response efficacy.
Resource allocation: Efficient distribution of resources is paramount for effective emergency re-
sponse. The provided architecture incorporates sophisticated algorithms and decentralized comput-
ing resources to ensure the judicious allocation of personnel, equipment, and supplies, thus maxi-
mizing the impact of available resources.
Usability in Chadian-like contexts: Understanding the infrastructural, geographical, and socioeco-
nomic challenges present in Chad, the architecture is crafted to be adaptable, intuitive, and responsive
to the specific needs and conditions of Chadian-like environments. Indeed, designing an emergency
response architecture tailored to Chadian-like contexts necessitates consideration of several key fea-
tures to ensure effectiveness and adaptability. Some of these features include:

– Offline capabilities: Given the intermittent or unreliable connectivity often encountered in remote
or underdeveloped areas, the architecture should support offline operation of essential function-
alities. This ensures that emergency response operations can continue even in the absence of a
stable network connection.

– Fault tolerance: The system should be resilient to failures or disruptions, whether due to power
outages, equipment malfunctions, or network issues.

– Energy efficiency: Given the prevalence of energy scarcity in some areas, the system should pri-
oritize energy-efficient operation.

– Localized decision-making: Empowering local emergency responders with decision-making capa-
bilities can enhance response agility and effectiveness.

– Adaptive response protocols: Establishing flexible response protocols that allow for rapid adjust-
ment based on real-time feedback and emerging challenges is essential. The architecture should
support adaptive decision-making processes that enable responders to improvise and innovate
in response to unexpected obstacles or constraints.

– Low bandwidth requirements: To accommodate limited network bandwidth in certain areas, the
architecture should minimize data transfer requirements and prioritize essential communica-
tion.

3.1 Overview of the proposed architecture
Considering the context of smart cities, we propose a solution to speed up the response of a city’s
emergency services (police, hospitals, fire brigade, etc.) in the event of an incident in a building. We
consider that there is several edge servers in the city, and each edge server is equipped with a FPGA-
based board. In each city’s building, several IoT objects equippedwith diverse sensing capabilities are
deployed. In the event of an incident, these send the information directly to the nearest edge server.

The edge server, which knows the city and represents it in the form of a graph, will consider
the location of the incident as the source node and will run the Dijkstra algorithm on its FPGA board.
Running this algorithmproduces theminimumpath to the incident scene for each emergency service.
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The edge server sends this result to the various services in order of priority, with the centre closest to
the incident scene having the highest priority for each service.

Each emergency service has a system that receives alerts from edge servers. When the service
with the highest priority receives the alert from the edge server, it takes the necessary steps to send
the vehicles with all the necessary information. If this service is unable to react, it can notify the edge
server so that the latter can notify the service with the highest priority among the remaining services,
or it can notify this service directly if the connection to the edge server is interrupted.

On the way to the incident scene, the vehicles follow the path given to them by the processing
system located on the emergency services premises. If there are any unforeseen circumstances on the
road and the route has to be changed, the vehicle can notify the edge servers for a rapid recalculation
of a new route, or it can recalculate the route itself, since it is also equippedwith FPGA-based devices.

Figure 1: Overview of the proposed architecture.

Concretely, the proposed architecture comprises several interconnected subsystems (see Figure
1):

1○ The Surveillance and Alerting System (SAS): This subsystem consists of a network of IoT
devices strategically deployed in a city building or area to detect incident and alert authorities
of emergencies. These devices, equippedwith various sensors, can detect incidents such as fires,
security threats, or natural disasters and trigger alerts to initiate response actions.

2○ The Edge Server Network (ESN): The architecture includes a cluster of interconnected edge
servers, each equipped with high computational capabilities and FPGA-based systems. These
servers receive alerts from the surveillance system’s main IoT device and perform distributed
computations, including route optimization using a distributed version of Dijkstra’s algorithm.

3○ The InterventionOrder Processing System (IOPS): Installedwithin each intervention service,
this system receives alerts from edge servers and determines the appropriate response based on
priority. It prepares intervention teams for immediate action, coordinates communication with
the edge servers, and provides guidance to intervention teams during operations.
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4○ The Intervention Team Guidance System (ITGS): This system, based on FPGA technology,
provides real-time guidance to intervention teams, displaying optimized routes and dynami-
cally recalculating paths if necessary. It communicates with the intervention order processing
system and the edge servers for continuous monitoring and decision support.

3.2 The Surveillance and Alerting System (SAS)

The SAS is a vital component of this architecture, comprising a network of interconnected IoT devices
equipped with diverse sensing capabilities to detect and signal incidents occurring at specific loca-
tions, thus initiating an intervention. Strategically deployed in key areas of the location, each device is
tailored to specific needs, such as fire monitoring or detection of terrorist threats, etc. To avoid send-
ing several messages containing the same information directly to the edge server, the network each
SAS has a special FPGA-based IoT device named central alert system, whose role is to collect the infor-
mation about the place of the incident, and trigger only one request to the edge servers. By this way,
the edge servers will process only one request for one incident, instead of processing several requests
for the same incident. Extensive literature exists detailing the construction of systems behaving like
the SAS, providing a robust foundation for implementation. This is an algorithmic description of the
SAS behaviour:

1○ Initialization: Each IoT device is configured with predefined monitoring parameters based on
its designated function and location within the urban environment.

2○ Sensing and detection: At regular intervals, the IoT devices collect sensor data relevant to
their designated monitoring tasks. Data processing algorithms analyze collected data to de-
tect anomalies indicative of emergency incidents.

3○ Incident identification: Upon detecting a potential emergency incident, the IoT device evalu-
ates the severity and nature of the situation. If the incident meets predefined criteria for trig-
gering an alert, the device proceeds to alert generation.

4○ Alert generation: The IoT device generates an alert message containing detailed information
about the incident, including its location and characteristics. The alert message is transmitted
to the central Alerting System for further processing and dissemination.

5○ Central alerting system: Upon receiving alert messages, the central alerting system analyzes
the data to verify the occurrence of an incident. If confirmed, the system selects an edge server
from a preconfigured list based on proximity and availability.

6○ Edge server selection: The Central Alerting System iterates through the list of edge servers,
pinging each oneuntil a response is received. The first responding server is designated to receive
the alert message. If the connection is interrupted during transmission, the system retries with
another available server.

7○ Alert transmission: The selected edge server receives the alert message and prepares it for dis-
semination to relevant emergency response teams and authorities. The alert contains compre-
hensive information about the incident, enabling responders to assess the situation and initiate
appropriate actions.

Figure 2 gives an overview of the network architecture and highlights the communication between
the IoT devices within a SAS and between the SAS and the edge server network. In it, one can see
that a SAS deployed to monitor a particular area of interest is made up of several IoT devices forming
a local network. Some of these devices are responsible for collecting data (hazards) and sending
them to the central alerting system (a special device designed using FPGA technology) so that it can
analyse them to detect potential incidents. When an incident is detected, the details are sent by the
central alerting system to the nearest active edge server to trigger the intervention process.
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Figure 2: Overview of the edge network.

3.3 The Edge Server Network (ESN)
3.3.1 The ESN behaviour

The Edge Server Network (ESN) serves as a pivotal component within the proposed architecture,
facilitating efficient and decentralized emergency response operations. Comprising interconnected
servers forming a cluster, each ESN server boasts substantial computational and storage capabilities,
enabling distributed task execution. Equippedwith FPGA-based systems specialized in shortest path
calculation using a distributed version of the Dijkstra algorithm, these servers play a crucial role in
determining optimal routes for intervention teams.

Upon receiving alerts, each ESN server initiates the computation of the shortest paths from in-
tervention services to the distressed location. Leveraging its onboard FPGA device, the server or-
chestrates the distributed execution of the Dijkstra algorithm, utilizing its access to the smart city
representation. This representation encompasses surveillance points, intervention services, and in-
termediary landmarks, forming a comprehensive graph of traversable paths within the city.

Furthermore, each ESN server maintains a cache memory storing previously evaluated shortest
paths to monitored locations. This caching mechanism minimizes redundant path calculations, up-
dating the cache periodically to synchronize with any changes in the city’s infrastructure. By lever-
aging cached data, ESN servers optimize computational efficiency, recalculating paths only when
necessary.

Post-path computation, the server prioritizes intervention services based on the severity and na-
ture of the incident, generating an ordered list of response teams. It then dispatches alerts to the
identified services, providing essential intervention details such as the shortest path and threat char-
acteristics. The server awaits confirmation from the highest-priority service before proceeding with
subsequent interventions. In the event of non-confirmation or declination, the server redirects the
alert to the next prioritized service, ensuring swift and decisive response actions.
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Throughout the intervention process, the server maintains communication with deployed inter-
vention teams, facilitating resource allocation and real-time coordination. In response to resource
requests from active intervention sites, the server identifies and dispatches the nearest and most suit-
able services, ensuring optimal resource utilization.

Ultimately, the intervention concludes upon receipt of confirmationmessages from all active inter-
vention sites, prompting the server to disseminate intervention completion notifications to all alerted
sites.

3.3.2 The physical architecture of an edge server in the system

Figure 3 describes the core components of an edge server in the system and how they behave, from the
reception of a request on the radio frequency module, its processing by the FPGA module, until the
sending of the alert to the emergency services, while saving the obtained result in the cache memory.

Figure 3: The physical architecture of an edge server in the system.

The edge server architecture in Figure 3 is composed by the following:

– TheRFmodule: the radio frequency communicationmodule of the edge server that is responsi-
ble of receiving alerts from the SAS, and send information to the Intervention Order Processing
System installed on the premises of emergency services;

– The MCU (Micro-Controller Unit): processor responsible of the computation of simple oper-
ations;

– The graph and data memory: stores the representation of the smart city as a graph;
– The distance and predecessors memory: stores for a node u, its predecessor in the graph, and

the minimum distance from source node to node u;
– The cache memory: stores for a node u, the best paths found after the execution of Dijkstra
algorithm. Instead of re-computing Dijkstra algorithm for a given node u that has already been
used before, the content of this memory can be used in order to provide the best path quickly;

– The FPGA module: dedicated to the parallel execution of the Dijkstra algorithm according to
the parameters supplied to it. The FPGA module is composed of:
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○ The memory read/write module: I/O module used to read and write data outside the
FPGA component;
○ The Dijkstra computation module: used to store all the data and instructions for Dijkstra
algorithm computation;
○ Several Graph Processing Engines (GPE): a GPE is a calculation module in the FPGA.

Given this physical architecture, the behaviour of an edge server in the system can be described
using the following steps

1○ Reception of alert: After receiving and responding to the ping from a Surveillance and Alert
System, the selected edge server receives the alert of an incident on its RF module. It identifies
the location u of the incident in the request that it receives.

2○ Sending location of the incident: The location of the incident, identified as a point u, is sent to
the MCU by the RF Module for further operations.

3○ Pre-processing and FPGA solicitation: The MCU receives the location u of the incident. It first
checks if in the cache memory there is already computed path for location u. If it is not the case,
it sends location u to the memory read module of the FPGA board.

4○ Providing existing path: If theMCUfind the cachememory already have a path for the location
u, it directly notify the RF module to send the result to the emergency services.

5○ Data initialization: Data are initialized in the memory read module in order to prepare for the
computation of the shortest paths to location uusingDijkstra algorithm. Thus, thememory read
module gets the graph structure from theGraphdatamemory, and the distance andpredecessor
of each node from the distance and predecessor’s memory.

6○ Transmission of data: Graph structure, source node u and distance and predecessors are trans-
ferred to the Dijkstra Computationmodule. The latter splits the adjacencymatrix obtained from
the graph structure into p sub-matrices (p representing the number of available GPEs).

7○ Dijkstra algorithm execution: The given node u (the location of the incident) is given as the
entry point to all the GPE in charge of the execution of Dijkstra algorithm. Each GPE executes
Algorithm 1 in parallel while considering each sub-matrix given by the Dijkstra computation
module. The behaviour of this stage is explained at section 3.3.3.

8○ Sending results to memory write module: The obtained results by the different GPEs are syn-
chronized, and a single shortest path is obtained for each emergency service to the location of
incident u. Results of the execution and synchronization are sent to the memory write module.

9○ Local memory updates and providing results: The memory write module which is aware of
the obtained results after the execution of Dijkstra algorithm for a given location u, sends that
results in parallel to the MCUmodule, and the cache memory. It also updates the distance and
predecessors memory with values obtained during the execution of the algorithm.

10○ Sending results to RF module: After receiving results from the memory write module, the
MCU orders the RFmodule to broadcast the alert to the Intervention Order Processing Systems.

11○ Sending alert to the InterventionOrder Processing System: The RFmodule which is in charge
of the communication between an edge server and other devices, forwards the obtained results
to the Intervention Order Processing Systems. These results contain the list of the emergency
services with their priority starting from the emergency service with the highest priority to the
service with the lowest one.

3.3.3 Parallel execution of Dijkstra algorithm

Remember that the edge server knows the city and has a graph representation of it in its memory.
Two different data structures are mainly used to represent a graph: adjacency matrix and adjacency
lists. In this case, the adjacency matrix is used to represent the graph because it is efficient, easy to
understand, easy to update and rapid in terms of operations speed. The adjacencymatrix M is a table
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Figure 4: Splitting adjacency matrix to sub-matrices.

representation of the relationships between nodes. Rows and columns of the matrix are labelled by
nodes’ IDs, and the values of cells indicate the distance between the nodes. The edge server divides
the adjacency matrix representing the graph into p sub-matrices (as illustrated on Figure 4). Each
GPE in the FPGA board will execute the Dijkstra algorithm for a given sub-matrix.

A sequential version of the Dijkstra algorithm for the shortest path computation is given in algo-
rithm 1. According to it, Dijkstra’s algorithm is iterative. After each iteration, a new vertex is added
to the computed set S. Very often, to parallelize an algorithm, we try to run its iterative structures
in parallel on several CPUs. In this case, Since the value of d[v] for a vertex v may change every
time a new vertex u is added in S, it is hard to select more than one vertex; and then it is not easy to
perform different iterations of the while loop in parallel. To remedy this, we use the proposed archi-
tecture (Figure 3) to run this algorithm in parallel on the FPGA board. The following describes our
approach:

– The adjacency matrix representing the graph is subdivided into p sub-matrices;
– let n be the number of vertices. Each sub-matrix has n

p
consecutive vertices, and the work asso-

ciated with each sub-matrix is assigned to a different GPE;
– Let Vi be the subset of vertices assigned to GPE Pi for i = 0, 1,⋯, p − 1. Each GPE Pi stores the
part of the array d that corresponds to Vi;

– Each GPE Pi computes di[u] = min{di[v] ∣ v ∈ (V − S)⋂Vi} during each iteration of the while
loop. The obtained minimums are sent to GPE P0 so that, it finds the global minimum ;

– GPE P0 now holds the closest vertex u to the source. GPE P0 broadcasts u to all GPEs so that
the GPE Pi responsible for vertex u, marks u as belonging to set S. Finally, each GPEs updates
the values of d[v] for its local vertices;

– When a new vertex u is inserted into S, the values of d[v] for v ∈ (V − S) must be updated.
The GPE responsible for v must know the weight of the edge (u, v). Hence, each GPE Pi needs
to store the columns of the weighted adjacency matrix corresponding to set S of the vertices
assigned to it.

This process is described on Figure 5; a pseudo-code explaining the proposed approach is also pro-
vided after this figure.
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Algorithm 1: Dijkstra’s Single Source Shortest Path Algorithm
Input: V /* The set of vertices */

1 E /* The set of edges */
2 w /* The distance from one node to another */
3 s /* The source vertex */
Result: d[v] /* The shortest distance from s to each vertex v */

4 d[s]← 0 /* Distance from s to itself is 0 */
5 S ← {s} /* The set of vertices for which the shortest path has been found */
6 U ← V /* Remaining vertices to be processed */
7 foreach v ∈ U do
8 if (s, v) ∈ E then
9 d[v]← w(s, v) /* Distance from s to adjacent vertices */

10 else
11 d[v]←∞ /* Infinite distance for non-adjacent vertices */
12 end
13 end
14 while U ≠ ∅ do
15 u← vertex v in U with the smallest d[v] /* Select the vertex u with the minimum

distance */
16 S ← S ∪ {u} /* Add u to the set of processed vertices */
17 U ← U ∖ {u} /* Remove u from the remaining vertices */
18 foreach v ∈ Adj[u] do

/* Adj[u] refers to the set of vertices adjacent to u */
19 if d[v] > d[u] +w(u, v) then
20 d[v]← d[u] +w(u, v) /* Relax the edge and update the distance */
21 end
22 end
23 end

Figure 5: Parallelism of Dijkstra algorithm using GPE.
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Concurrent Dijkstra’s Algorithm

Input:

– V : The set of vertices
– E: The set of edges
– p: The number of GPEs (processors)
– s: The source vertex
– w(u, v): The weight of edge (u, v)

Output: The array d containing the shortest path distances from the source vertex to all other
vertices.
Initialization:

– Divide the adjacency matrix into p sub-matrices, one per GPE;
– Assign each sub-matrix to GPE Pi, where i = 0, 1, . . . , p − 1;
– Each GPE Pi stores the corresponding part of the distance array d for vertices in Vi;
– Set S ← ∅, where S is the set of vertices for which the shortest path has been found;
– For each vertex v in Vi:

○ If v is the source vertex, set di[v]← 0;
○ Otherwise, set di[v]← w(s, v).

Main Loop on each GPE (While S ≠ V ):

– Each GPE Pi finds the vertex ui with the smallest distance value among the vertices in
its subset Vi that are not yet included in S;

– The {ui} are sent to GPE P0 for the determination of the global minimum u;
– u is sent to all GPEs by GPE P0;
– Each GPE Pi marks u as belonging to S;
– For each v ∈ (V − S) ∩ Vi: If di[v] > d[u] +w(u, v), update di[v]← d[u] +w(u, v).

3.4 The Intervention Order Processing System (IOPS)
The IOPS serves as a critical component installed within each intervention service, enabling recep-
tion and processing of messages originating from edge servers. Upon receiving an alert, this system
evaluates whether immediate intervention is warranted based on its priority ranking. If immediate
action is not required, the service remains on standby, prepared to intervene if necessary. In cases
where immediate intervention is deemed necessary, the system transfers pertinent information, in-
cluding the route to the incident location, the coordinating edge server’s address, and the city map
graph received from the server, to a mobile guidance system carried by the intervention team. The In-
tervention Order Processing System may be connected to various alert services (such as email, SMS,
or sirens) to promptly notify agents upon receiving an intervention alert.

1○ Reception of alert: The IOPS receives alert messages from edge servers, containing information
about the incident and its location.

2○ Priority evaluation: Based on predefined priority criteria, the system assesses the urgency of
the alert and determines whether immediate intervention is required.

3○ Standby or immediate action: If immediate intervention is not necessary, the service remains
on standby, ready to respond if the situation escalates. In the case of an urgent alert requiring
immediate action, the system proceeds to coordinate intervention efforts.
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4○ Information transfer: The system transfers essential information, including the incident loca-
tion, route guidance, and coordinating server details, to a mobile guidance system carried by
the intervention team.

5○ Integrationwith alert services: The system interfaces with various alert services, such as email,
SMS, or sirens, to promptly notify intervention agents upon receiving an alert.

3.5 The Intervention Team Guidance System (ITGS)
The ITGS represents an essential component of the architecture, leveraging FPGA-based technology
to provide real-time guidance and support to intervention teams during emergency response oper-
ations. Equipped with a display screen, this system visualizes the optimal route for intervention
teams to follow. Moreover, it possesses computational capabilities to evaluate alternative routes in
case the initially proposed path is obstructed or communication with the server is disrupted. This
adaptability ensures that intervention teams can swiftly overcome obstacles and continue their mis-
sion uninterrupted. Additionally, the system facilitates communication with the IOPS and the central
server throughout the operation, enabling continuous monitoring and decision support. It behaves
like described below:

1○ Initialization: The ITGS initializes upon receiving instructions from the IOPS, including the
incident location and route guidance.

2○ Route representation: The system displays the recommended route on its screen, providing
intervention teams with visual guidance to the incident location.

3○ Real-time evaluation: As intervention teams progress towards the destination, the system con-
tinuously evaluates their position and the feasibility of the proposed route.

4○ Alternative route calculation: If obstacles are encountered or communicationwith the server is
disrupted, the system utilizes its computational capabilities to assess alternative routes. Using
local algorithms, the system determines the most efficient alternative path based on available
information.

5○ Dynamic route adjustment: The system dynamically adjusts the displayed route in real-time,
guiding intervention teams along the newly calculated path if necessary.

6○ Communication with processing system and server: Throughout the intervention, the system
maintains communication with the IOPS and the central server. This communication facilitates
continuous monitoring of the intervention progress and enables timely decision-making sup-
port from the central command.

The ITGS plays a crucial role in ensuring the effectiveness and adaptability of intervention teams
during emergency response operations, empowering them to navigate complex environments and
overcome challenges encountered in Chad-like contexts.

3.6 Discussion and perspectives
In addressing the critical challenges of time efficiency, resource allocation, and usability in Chadian-
like contexts, the proposed architecture presents a comprehensive solution that integrates multiple
components to optimize emergency response processes.
Time efficiency: The architecture’s design prioritizes swift response times through the coordinated
functioning of its constituent components. The SAS swiftly detects incidents, triggering immediate
alerts to initiate response actions. This rapid detection is complemented by the ESN’s distributed
computing capabilities, which expedite the calculation of optimal paths to incident sites. Additionally,
the IOPS streamlines response tasks, ensuring that resources are allocated promptly and effectively.
The ITGS further enhances time efficiency by providing real-time guidance to intervention teams,
minimizing delays in reaching incident sites.
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Resource allocation: Efficient resource allocation is facilitated by the architecture’s intelligent coor-
dination mechanisms. While the SAS detects incidents, its primary contribution lies in initiating the
response process rather than directly allocating resources. In contrast, the ESN optimizes resource
deployment by calculating optimal paths to incident sites, ensuring that personnel and equipment
are directed to critical areas in a timely manner. The IOPS plays a central role in resource allocation
by prioritizing response tasks based on the severity and urgency of each incident, thus optimizing
resource utilization. However, the ITGS focuses on guiding intervention teams rather than directly
allocating resources.
Usability in Chadian-like contexts: Adaptability and usability in challenging environments are key
considerations in the architecture’s design. The SAS enhances usability by providing continuous
incident monitoring, particularly in areas with intermittent connectivity. Similarly, the ESN’s fault
tolerance and energy efficiency features make it well-suited for deployment in resource-constrained
environments, ensuring adaptability to infrastructure constraints. However, the usability of the IOPS
may be limited by the availability of reliable communication infrastructure in Chadian-like contexts.
Despite these challenges, the ITGS enhances usability by providing real-time guidance to intervention
teams, even in areas with limited infrastructure.

3.6.1 Strengths and capabilities

Enhanced Emergency Response Efficiency: The architecture leverages advanced technologies such
as IoT devices, edge servers, and FPGA-based systems to significantly enhance the efficiency and ef-
fectiveness of emergency response operations. Real-time data collection and analysis enable rapid
detection of incidents, while distributed computation facilitates optimized route planning and coor-
dination of intervention teams.
Adaptability and flexibility: The distributed nature of the architecture, coupled with its computa-
tional capabilities, ensures adaptability and flexibility in responding to dynamic urban environments.
The ability to dynamically adjust routes and response strategies based on real-time data and changing
conditions enhances the agility and responsiveness of intervention teams.
Integration of cutting-edge technologies: By integrating technologies such as FPGA-based compu-
tation, edge computing, and IoT sensors, the architecture represents a state-of-the-art solution for
addressing the complex challenges of emergency response in Chad-like environments. These tech-
nologies offer unprecedented capabilities for rapid decision-making, precise navigation, and seamless
communication among responders.

3.6.2 Drawbacks and challenges

Theoretical nature of the proposal: While the paper outlines a comprehensive architectural design
for enhancing emergency response efficiency, it’s important to acknowledge that the presented con-
cepts remain theoretical. The practical implementation of such a complex system entails significant
challenges and requires extensive research, development, and testing efforts. Transitioning from the-
oretical concepts to real-world deployment involves addressing practical constraints, technical limita-
tions, and operational considerations, highlighting the need for furtherwork to translate the proposed
architecture into tangible solutions.
Scalability and deployment complexity: Deploying and scaling the architecture across a city-wide
network may pose significant logistical and technical challenges. Coordinating the installation of IoT
devices, edge servers, and communication infrastructure, as well as ensuring interoperability with
existing systems, requires careful planning and resource allocation.
Reliability and resilience concerns: The reliance on interconnected devices and communication net-
works introduces potential points of failure, raising concerns about reliability and resilience. Inter-
ruptions in connectivity or malfunctions in hardware could compromise the effectiveness of emer-
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gency response operations, highlighting the need for robust redundancy measures and disaster re-
covery protocols.
Data security and privacy risks: The collection, processing, and transmission of sensitive data from
IoT devices raise concerns about data security and privacy. Unauthorized access to this data could
lead to breaches of confidentiality or misuse of personal information, underscoring the importance
of implementing robust encryption protocols and access control mechanisms to mitigate these risks.
Algorithmic efficiency and adaptability: While the distributed Dijkstra’s algorithm implemented on
FPGA-based edge servers offers computational efficiency, ensuring accurate route calculations in dy-
namic urban environments remains a challenge. Optimizing algorithmic performance to account for
changing traffic conditions, road closures, and unforeseen obstacles is essential to maintain response
effectiveness.
Human factors and training requirements: Despite the automation of many aspects of emergency
response, human factors and training requirements remain critical considerations. Ensuring that in-
tervention teams are adequately trained to interpret and act upon guidance provided by the system,
particularly in high-stress situations, is essential to maximize operational effectiveness and minimize
response times.

3.6.3 Perspective work

Prototype development and testing: Initiating prototype development to validate the feasibility and
functionality of the proposed architecture in controlled environments is a short-term objective. This
will allow to test system components, evaluate performance metrics, and early identify potential hid-
den challenges.
Integration of artificial intelligence: Future research could explore the integration of artificial intelli-
gence (AI) techniques, such as machine learning and predictive analytics, to enhance the intelligence
and adaptability of the architecture. AI algorithms could analyze historical data patterns, anticipate
potential emergencies, and dynamically adjust response strategies based on evolving conditions.
Community engagement and feedback mechanisms: Incorporating community engagement and
feedback mechanisms into the architecture could foster greater collaboration between responders
and the public. Crowd-sourced data and citizen reporting platforms could provide valuable insights
into local conditions and facilitate more targeted response efforts.
Interoperability and standardization: Addressing interoperability challenges and promoting stan-
dardization across emergency response systems is critical to facilitate seamless communication and
coordination between different stakeholders and technologies. Developing open standards and pro-
tocols could enhance interoperability and streamline integration efforts.
Ethical and societal implications: Further research is needed to explore the ethical and societal im-
plications of deploying advanced emergency response technologies in urban environments. Under-
standing the potential impact on privacy, equity, and social cohesion is essential to ensure that the
benefits of the architecture are equitably distributed and ethically implemented.
Long-term evaluation and optimization: Continuous evaluation and optimization of the architecture
are necessary to address emerging challenges and evolving user needs. Long-term studies assessing
the effectiveness, efficiency, and user satisfaction of the system in real-world settings can provide
valuable insights for ongoing refinement and improvement.

4 Conclusion
This paper presented a comprehensive architecture tailored to the unique challenges of emergency
response systems in resource-constrained environments, exemplified by contexts akin to that of Chad.
By leveraging decentralized computing resources and optimizing algorithms for efficiency, the pro-
posed architecture addresses critical shortcomings observed in existing approaches. The integration
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of Field Programmable Gate Arrays (FPGAs), Dijkstra’s algorithm, and Edge Computing enhances
computational speed, scalability, and reliability, ensuring timely and effective emergency response.

The architecture incorporates key components such as the Surveillance andAlerting System(SAS),
Edge Server Network (ESN), Intervention Order Processing System (IOPS), and Intervention Team
Guidance System (ITGS). Together, these components form a holistic framework that significantly
improves the timeliness and efficacy of emergency response operations. The SAS provides real-time
situational awareness, enabling informed decision-making. The ESN leverages FPGA technology for
fast computation of shortest paths, reducing response times. The IOPS optimizes resource alloca-
tion and deployment strategies, while the ITGS ensures continuous tracking and guidance during
emergency interventions.

Our analysis and theoretical evaluations demonstrate the architecture’s potential to drastically
reduce response times and enhance resource allocation efficiency. By introducing parallel calculation
of shortest paths, storing computed paths in cachememory and utilizing distributed edge computing,
the system speeds calculations, minimizes redundant calculations and ensures reliable performance
even in environments with constrained infrastructure and intermittent connectivity.

While this work represents a significant advancement in addressing the pressing needs of emer-
gency response systems in resource-constrained environments, it is not without its limitations. The
proposed architecture’s performance relies heavily on the accuracy and timeliness of data collected
from IoT devices and sensors. Future research endeavors should focus on refining algorithmic ap-
proaches, enhancing hardware capabilities, and conducting real-world implementations to validate
the efficacy of the proposed architecture. Additionally, exploring machine learning techniques for
predictive analytics and decision support could further enhance the system’s capabilities.

In essence, this paper’s contribution seeks to empower emergency responders with the tools and
technologies necessary to mitigate the impact of crises and safeguard the well-being of communities
in challenging environments. By fostering collaboration between academia, industry, and local stake-
holders, we aspire to drive meaningful advancements in emergency response systems and contribute
to the collective resilience of societies worldwide. The proposed architecture not only addresses cur-
rent gaps in emergency response strategies but also sets a foundation for future innovations in smart
city technologies, ultimately enhancing the safety and resilience of urban populations.
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