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Abstract

Graph Neural Networks (GNNs) field has a dramatic development nowadays due to the strong
representation capabilities for data in non-Euclidean space, such as graph data. However, as the
scale of the dataset continues to expand, sampling is commonly introduced to obtain scalable GNNs,
which leads to the instability problem during training. For example, when Graph SAmpling based
INductive learning meThod (GraphSAINT) is applied for the link prediction task, it may not con-
verge in training with a probability range from 0.1 to 0.4. This paper proposes the improved Graph-
SAINTs by introducing two normalization techniques and one Graph Neural Network (GNN) trick
into the traditionalGraphSAINT to solve the problemof the training stability and obtainmore robust
training results. The improved GraphSAINTs successfully eliminate the instability during training
and improve the robustness of the traditional model. Besides, we can also accelerate the training
procedure convergence of the traditional GraphSAINT and obtain a generally higher performance
in the prediction accuracy by applying the improved GraphSAINTs. We validate our improved
methods by using the experiments on the citation dataset of Open Graph Benchmark (OGB).
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1 Introduction
Nowadays, the Graph Neural Networks (GNNs) proposed in 2009 [1] has been widely used for pro-
cessing the data in the non-Euclidean space, especially the graph data. Because of the powerful pro-
cessing capabilities for the unstructured data, GNNs are widely used in many areas such as social
networks [2, 3], drug discovery [4], and recommendation [5, 6]. The existing GNN models can be
roughly classified into four categories, one of which is Convolutional Graph Neural Networks (Con-
vGNNs) [7]. ConvGNNs can be further classified into two categories, spectral-basedConvGNNs and
spatial-based ConvGNNs. Graph ConvolutionNetwork (GCN) is a typical spectral-based ConvGNN
model [8, 9].

To efficiently train GCN and improve the generalization ability of GCN for new nodes, the Graph
SAmpling based INductive learning meThod (GraphSAINT) [10] is proposed. GraphSAINT uses a
sampling method called the subgraph sampling method to generate a serial of subgraphs from the
whole graph and then build a GCN on the subgraph. This subgraph sampling method alleviates the
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problem of the neighbor explosion so that the number of neighboring nodes no longer increases expo-
nentially with the number of layers in GraphSAINT. Moreover, GraphSAINT has a stronger process-
ing capability for large graphs by sampling multiple subgraphs from the original dataset to construct
minibatch for training compared with the Graph SAmple and aggreGatE (GraphSAGE) algorithm
[11]. In general, nodes with a broader influence on each other can be selected to form a subgraph
with a higher probability. However, the subgraph sampling method applied in GraphSAINT leads to
a different node sampling probability and introduces bias into themini-batch estimator, whichmakes
the trainingmore difficult. To deal with this problem, the normalization techniques are proposed and
applied in [10] tomake sure that the feature learningwill not give priority to themore frequently sam-
pled nodes. Therefore, GraphSAINT can achieve a better accuracy score on the classification task.

However, experiments show that the stability problem appears during training when Graph-
SAINT is applied to deal with the link prediction task [12, 13] on the citation dataset of the stan-
dard Open Graph Benchmark (OGB) [14]. Unlike the node classification task, the main task of link
prediction is to predict whether there is a link between two nodes in a network. This stability prob-
lem during training means that the normalization techniques in [10] are insufficient to guarantee the
training quality for link prediction. So the training loss may fall into non-convergence, which indi-
cates that the value of the training loss will suddenly rise and remain unchanged. Training stability
is important to the development of GNNs.

We can get some inspiration in training stability from the CNN training methods. Stochastic gra-
dient descent and its variants such as momentum [15] and Adagrad [16] have been widely used to
train the neural networks. As the number of neural network layers gradually increases, changes to
the neural network parameters will amplify [17]. When constantly adapting to the new distribu-
tion, the distributions of layers’ inputs present a problem called covariate shift [18], which is bad for
neural network convergence. Ioffe and Szegedy presented the Batch Normalization (BN) to reduce
the internal covariate shift and accelerate the convergency of the deep neural nets [17]. This tech-
nique makes use of the mean and variance to normalize the data values over each mini-batch, which
brings a higher learning rate and drops the Dropout [19]. Besides BN, Layer Normalization (LN) is
also widely used among normalization techniques [20], but it uses a different normalization method
from BN. However, the effective normalization techniques have drawn little attention in GNNs due
to the fewer network layers [7]. As the graph becomes larger and larger, the GNN models are more
complicated, which leads to the stability problem during training. Thus, the application of the nor-
malization techniques is of great significance to the robustness in training on large graphs. Besides,
the tricks of GNNs have drawn more attention in recent years. The presence of the tricks helps im-
prove the accuracy of the GNN algorithms significantly on the OGB datasets [21, 22]. However, the
role of GNN tricks on model stability needs to be further verified.

Therefore, to solve the stability problem in the training process of the traditional GraphSAINT for
the link prediction task, we propose the improvedGraphSAINTs by adjusting two normalization tech-
niques, that is BN and LN, and one GNN trick to the training and inference process of the traditional
GraphSAINT based on the citation dataset of OGB in this paper. By applying the three techniques to
the model, we eliminate the instability of the traditional GraphSAINT during training successfully.
Moreover, we also realize a reduction in the training time and improve the accuracy under the premise
of maintaining the original link prediction accuracy with the help of the improved GraphSAINTs. We
validate the effectiveness of our methods by the citation dataset of OGB.

Inspired by [23], the paper organizes as follows: Firstly, section 2 is the related work about the tra-
ditional GraphSAINT, especially its sampling strategy. Besides, we briefly present two normalization
techniques, which is BN and LN, and a GNN trick; Next, section 3 describes our improved Graph-
SAINTs and the processes of training; Then, section 4 shows the related experiment results based on
the citation dataset of OGB; At last, conclusions are given in Section 5.
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2 Related work

2.1 The Sampling Strategy of the traditional GraphSAINT
Since GCN aggregates one-hop neighbors’ information via the adjacent matrix [8, 9], it has a low
generalization ability as mentioned in section 1, that is, GCN can not deal with the problem of adding
a new node to a graph. If we want to obtain the node representation of the new node, we need to
update the adjacent matrix and re-train the GCN model to update the model parameters. Therefore,
GraphSAGE is proposed to improve the generalization ability of GCN [11]. GraphSAGE makes use
of the neighbor sampling strategy and defines a new learnable aggregation function to aggregate
neighbor nodes’ information. The process of generating a target node embedding avoids using the
adjacent matrix and the time of retraining the model.

Instead of the neighbor sampling strategy, GraphSAINT achieves the sampling of large images by
proposing a sampler called SAMPLE [10]. This sampling method is called the subgraph sampling
method, which can help GraphSAINT deal with the neighbor explosion problem. Besides, similar to
GraphSAGE, GraphSAINT also has the generalization ability for new nodes.

The sampler can preserve the connectivity characteristic of the graph. Therefore, bias in the mini-
batch estimation will be almost inevitably introduced by the sampler. Therefore, the determination
of sampling probability is the critical step to realizing the subgraph sampling method. In [10], the
sampling probabilities of each node, edge, and subgraph are all well-estimated by deriving the cor-
responding formulas. Furthermore, the subgraphs obtained by sampling will be used for the Graph-
SAINT training.

2.2 The typical normalization techniques
Due to the change of the distributions during training, the internal covariate shift appears in a deep
network. So the normalization techniques are used to eliminate this shift and achieve a faster training
time [24, 25]. In the following, we mainly introduce two normalization techniques, which is BN and
LN.

BN presented in [17] is a typical normalization technique for mini-batch. BN follows the math-
ematical statistics: Firstly, the mean is calculated over a mini-batch; Next, the variance is calculated
by the mean; Then, each data over a mini-batch can be normalized by subtracting the mean and then
divided by the variance; Finally, the scale and shift parameters are learned for each data point over
a mini-batch. In BN, the mean and the variance are calculated for different neuron unit inputs, and
the inputs in the same batch have the same mean and variance. Therefore, BN is sensitive to the size
of the batch size. Since the mean and the variance are calculated on one batch, if the batch size is too
small, the calculated mean and variance are not enough to represent the entire data distribution.

Different fromBN, LN calculates themean and variance of the input of all neuron units in a specific
layer of the deep network to perform the normalization operation and does not depend on the batch
size. Therefore, the input of the neuron units in the same layer in LN has the samemean and variance,
and different input samples have unequal means and variances.

2.3 Free Large-scale Adversarial Augmentation on Graphs (FLAG)
As aGNN trick, FLAG is a free large-scale adversarial augmentation on graphs to alleviate overfitting.
Different from the existing literature of data augmentation by changing the graph structures, FLAG
is conducted in the input node feature space. Standard adversarial training aims to deal with an
optimization problem [26]. This kind of optimization problem can be reliably solved by making use
of both Stochastic Gradient Descent (SGD) and Projected Gradient Descent (PGD), which may cause
the high computational cost and the loss of the model accuracy [27].
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FLAG is an adversarial data augmentation on graphs. It can improve the model accuracy and
effectively enhance the generalization performance of the model. FLAG mainly achieves data aug-
mentation by adding the small gradient-based adversarial perturbations to the input node features
and preserving the graph structures. FLAG is a valuable exploration of the power of adversarial data
augmentation on graphs. The general algorithm flow of FLAG is as follows:

Assume that each epoch contains M steps. In each epoch, we first define a perturbation matrix
named Pert. Pert that has a gradient is the same shape as the input X and obeys a uniformdistribution.
Then Pert as perturbations and X are both sent to the model for training. The training has a total of M
steps. We manually update Pert according to the gradient of Pert and then clear the gradient of Pert
in each step. Finally, after finishing the M steps, we accumulate the M gradient values, and then the
model parameters are all updated by the backpropagation.

3 Methodology
As mentioned in section 1, the original normalization techniques of the traditional GraphSAINT,
which are valid for the node classification task, are insufficient to improve the training quality for
the link prediction task on OGB. The traditional GraphSAINT needs to be improved to obtain more
stable training results. Therefore, we proposed three strategies, including BN, LN, and FLAG, to im-
prove the traditional GraphSAINT and achieve more stable training results. According to the basic
principle, the three strategies can be divided into two types: one is the normalization techniques
including BN and LN, the other is the GNN trick named FLAG.

Based on the connectivity rules of the nodes, the sampled subgraphs in GraphSAINT can get the
edge sampling probability with the minimum variance. In contrast, for node selection, the sampled
subgraphs use the random node sampler. So the node feature data of each sampled subgraph do not
obey the standard normal distribution. Therefore, the normalization techniques BN and LN are used
to normalize the mean and variance of the input data from different perspectives. Besides, as a data
augmentation method, the GNN trick named FLAG can enhance the model’s anti-interference ability
against the input data by introducing small gradient-based adversarial perturbations into the input
node feature data. In the following, we will introduce the two types of improved GraphSAINTs in
detail.

3.1 The improved GraphSAINTs with the normalization techniques
In this section, we will firstly introduce the first improved GraphSAINT with BN. This improved
GraphSAINT is firstly introduced in [28]. Here, we have made some necessary supplementary ex-
planations based on the original version. The improvedGraphSAINTwith BN realizes that the inputs
in the same batch have the same mean and variance. Assume the graph dataset to be processed is a
whole graph ζ = (V, ξ) with N nodes v ∈ V , edges (vi, vj) ∈ ξ, For the node vi in a sampled subgraph
ζs of ζ according to SAMPLE, its feature hi,s has d elements. To normalize the input data distribution,
the input node feature vector can be normalized by

ĥi,s =
hi,s − µb

s√
(σb

s)
2

(1)

µb
s =

1
d

d

∑
i=1

hi,s σb
s =

¿
ÁÁÀ1

d

d

∑
i=1
(hi,s − µb

s)
2 (2)

where µb
s and σb

s are the mean and the variance for the node vi in the node feature dimension and
computed over the training data set. Therefore, after BN, the inputs in the same batch have the same
mean and variance.
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However, the improved GraphSAINT with LN does not perform the same normalized operation
in a batch different from the improved GraphSAINT with BN. This improved method with LN fixes
the mean and the variance of the summed inputs in a specific layer of the deep network to reduce the
covariate shift. Thus, the LN can be calculated as follows:

ĥi,s =
hi,s − µl

s√
(σl

s)
2

(3)

µl
s =

1
H

H

∑
i=1

hi,s σl
s =

¿
ÁÁÀ 1

H

H

∑
i=1
(hi,s − µl

s)
2 (4)

where µl
s and σl

s are the mean and the variance over all the hidden units in the same layer, H is the
number of hidden units in a layer. Therefore, the input of neuron units in the same layer in LN has
the same mean and variance. Because the different inputs have different means and variances, the
input data in the same batch have unequal means and variances.

The whole training process of the improved GraphSAINTwith one of the two normalization tech-
niques (BN or LN) is illustrated in Algorithm 1. We can see that when using the two normalization
techniques to improve GraphSAINT, a basic flow of the algorithm is roughly the same, and the only
thing you need to do is to choose one of the two normalization techniques where the normalization
technique is applied. The specific process of Algorithm 1 is as follows:

Algorithm 1 The improved GraphSAINT during training with the normalization technique (BN or
LN) on the citation dataset of OGB
Input: Training graph ζ = (V, ξ); GraphSAINT sampler
Output: Loss and accuracy; GCN model with trained weights
Pre-processing: Directed graph to undirected graph; Sampled subgraph ζs of ζ
for each subgraph ζs do

GCN construction on ζs and before each active layer RELU do
Apply the normalization technology (BN or LN) on the output of the convolutional layer
Forward propagation to calculate loss according to MRR
Backward propagation to update weights

end for

At the beginning of the training, a directed graph is converted to an undirected graph in the stage
of the pre-processing on ζ. And SAMPLE is conducted to obtain the sampled subgraph ζs [10]. Next,
an iterative training process is performed via SGD to obtain the updated weights. For each iteration,
we use an independent subgraph ζs. In the iterative loop, the normalization technique (BN or LN)
is applied on the output of the convolutional layer of GCN, which is also the input of the RELU layer.
Then the modified GCN on ζs is conducted to rank the missing references andMean Reciprocal Rank
(MRR) is used to calculate the loss in the process of the forward propagation. In MRR, the score
of the nth matched result is 1/n and the final score is the sum of all scores. Finally, the backward
propagation is carried out to update weights.

Besides, although the subgraphs are used for training asmentioned in Section 2.1, thewhole graph
data are used to obtain the reference result. Therefore, during inference, the normalization operations
should be conducted independently.

3.2 The improved GraphSAINT with a GNN trick
As mentioned in Section 2.3, the GNN trick named FLAG is a graph data augmentation method that
helps relieve overfitting in the training process of a GNN model. FLAG enhances the model robust-
ness by introducing small gradient-based adversarial perturbations into the input node features. The
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Algorithm 2 The improved GraphSAINT during training with a GNN trick named FLAG on the
citation dataset in OGB

Input: Training graph ζ = (V, ξ); GraphSAINT sampler
Output: Loss and accuracy; GCN model with trained weights
Pre-processing: Directed graph to undirected graph; Sampled subgraph ζs of ζ
for each subgraph ζs do

Introduce the small gradient-based adversarial perturbations into the input node features
GCN construction on ζs

Forward propagation to calculate the loss under the premise of the perturbations according to
MRR

Backward propagation to update weights
end for

improved GraphSAINTwith the GNN trick named FLAG can solve the stability problem in the train-
ing process. Besides, it also can improve the accuracy of the traditional GraphSAINT.

The whole training process of the improved GraphSAINT with a GNN trick named FLAG is illus-
trated in algorithm 2. We can see that algorithm 2 has the same pre-processing as algorithm 1. Then
an iterative training process is also conducted via SGD to update model weights, and each iteration
uses an independent subgraph ζs. Next, in contrast, algorithm 2 introduces small gradient-based ad-
versarial perturbations into the input node features. Then the input node features with perturbations
are fed into the GCNmodel as input, and GCN construction is performed. Finally, under the premise
of the perturbations, the loss can also be calculated according to MRR.

4 Experiments
In this section, to verify the effectiveness of the improved GraphSAINTs, we choose the link predic-
tion task based on the citation dataset of OGB (ogbl-citation). Before the emergence of OGB, the
main characteristic of the existing graph datasets is small. The small graph datasets are far from the
web-scale graphs in the real world, which is harmful to the data-driven model research and practical
problem solving, and the model trained with such a small dataset is also called a toy model. Such toy
models may have similar statistical results on these small datasets, which makes the models hard to
distinguish. Besides, such toy models are also hard to extend to large graphs.

There is no doubt that OGBmakes toymodels a thing of the past. Besides, OGB also gives a unified
experimental standard, including the data set division method and the evaluation and verification
standard. The datasets contained in OGB can be divided into three groups. Each group corresponds
to a specific graph machine learning task. There are three different tasks, which are node classifica-
tion, link prediction, and graph classification. Because the citation dataset that we choose is used for
the link prediction task, citation can also be expanded as ogbl-citation by adding a prefix. The ogbl-
citation dataset is a directed graph that represents the citation network between subsets of papers
extracted from Microsoft Academic Graph (MAG) [29]. Each node is a paper with 128-dimensional
word2vec features that summarize its title and abstract. Each directed edge indicates that one pa-
per cites another paper. All nodes are also accompanied by meta-information indicating the year of
publication of the corresponding paper.

The purpose of the link prediction task is to use the currently acquired network data (including
structural information and attribute information) to predict which new connections will appear in
the network. For the ogbl-citation dataset, the link prediction task is to predict the missing citations
that are randomly dropped based on the existing edges. So the model is required to rank the miss-
ing references higher than the other existing references. According to this, we choose MRR as the
evaluation metric [14]. Besides, the validation set and testing set consist of randomly dropped edges.
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Naturally, the training set consists of all the rest of the edges.

Table 1: Results for the traditional GraphSAINT on the citation dataset of OGB

GraphSAINT Training Validation Test
official 0.8626±0.0046 0.7933±0.0046 0.7943±0.0043
convergence 0.8690 0.8031 0.8048
non-convergence 0.0010 0.0010 0.0010

The results of the traditional GraphSAINT on the citation dataset of OGB are given in Table 1.
The official result of GraphSAINT is convergent: the MRR value of the training set is 0.8626 ±0.0046,
the MRR value of the validation set is 0.7933 ±0.0046, and the MRR value of the test set is 0.7943
±0.0043. The official MRR results are the statistical result of 10 RUNs. Therefore, for the convenience
of comparison, the hyperparameter named RUN will also be set to 10 in the following experiments.

The bottom two rows in Table 1 are the results of our recurrence experiment of the traditional
GraphSAINT. We found that the traditional GraphSAINT will not converge in training with a prob-
ability range from 0.1 to 0.4 in the training process. For a RUN where the loss converges, the MRR
results are consistent with the official results as shown in Table 1, i.e., the training result can reach
about 0.8690, the validation result can reach about 0.8031, and the test result can also reach about
0.8048. The loss curve for a RUN where the loss converges is shown in Figure 1(a). We can see that
one RUN contains 200 epochs. Besides, in Figure 1(a), as the epoch increases, the values of the loss
gradually decrease overall, although the values of the loss fluctuate slightly in the process of the de-
cline.

The MRR results for a RUN where the loss does not converge are shown in the last row of Table
1, i.e., the training result, the validation result, and the test result are all approximately equal to 0,
which means that the MRR results of the run where the loss does not converge are invalid. And the
loss curve for a RUN where the loss does not converge is shown in Figure 1(b). We can see that after
the 78th epoch, the loss is suddenly and sharply increased to 34.5388 and remains unchanged, which
indicates that the loss can not converge afterward. Therefore, somemeasures need to be taken to help
the loss converge and obtain the valid MRR results for the link prediction task.

To deal with the problem of the non-convergence in the training process, three different strategies,
which are LN, BN, and FLAG, are applied to improve the traditional GraphSAINT. The results for the
improved GraphSAINTs on the citation dataset of OGB are given in Table 2. In particular, we can see
that there are four different improved GraphSAINTs. In addition to the three strategies mentioned
above, the results of a new combination strategy named BN+FLAG are also shown in the last row of
Table 2. As mentioned in section 3, both LN and BN belong to the normalization techniques, while
FLAG belongs to the GNN tricks. And we are curious if there are better results for the improved
GraphSAINTs after applying the combination of the two types of strategies, that is BN and FLAG.
Therefore, the related experiments are added to verify our conjecture. In the following, the results
of the four improved GraphSAINTs as shown in Table 2 will be explained in turn. Besides, for each
subfigure in Figure 2, a blue dotted line, which is also the loss curve during training of the traditional
GraphSAINT with convergence as shown in Figure 1(a), is added. This blue dotted line is used to
compare with the loss curve during training of the four improved GraphSAINTs.

At first, LN is listed in Table 2 as an improved strategy for the traditional GraphSAINT, and the
three MRR values are shown afterward: the training result can reach 0.8526±0.0151, the validation
result can reach 0.7790±0.0113, and the test result can also reach 0.7791±0.0114. After applying the
improvedGraphSAINTwith LN, the loss curve during training is shown by the solid red line in Figure
2(a), where the loss curve is convergent. Moreover, comparedwith the blue dotted line in Figure 2(a),
the solid red line fluctuates more sharply in the first 20 rounds at the beginning of training, but it will
be more stable in the later period. In conclusion, we can see that although the improved GraphSAINT
with LNhas a loss of around 0.015 loss in accuracy comparedwith the official results of the traditional
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Figure 1: The loss curve during training of the traditional GraphSAINT

Table 2: Results for the improved GraphSAINTs on the citation dataset of OGB

GraphSAINT Training Validation Test
LN 0.8526±0.0151 0.7790±0.0113 0.7791±0.0114
BN 0.9001±0.0014 0.8335±0.0020 0.8344±0.0023
FLAG 0.8880±0.0019 0.8165±0.0022 0.8175±0.0022
BN+FLAG 0.8997±0.0013 0.8349±0.0010 0.8364±0.0012

GraphSAINT, it solves the instability problem in the process of training.
Then, another normalization technique named BN is listed next to LN in Table 2. Compared

with the official results for the traditional GraphSAINT, all the three MRR values have an improve-
ment as shown in Table 2: the training result can reach 0.9001±0.0014, the validation result can reach
0.8335±0.0020, and the test result can also reach 0.8344±0.0023. Besides, the loss curve of the im-
proved GraphSAINT with BN during training is shown by the solid red line in Figure 2(b). We can
see that the solid loss curve is convergent. Besides, compared with the blue dotted line in Figure
2(b), the improved GraphSAINT with BN has a stable convergence during training and a faster con-
vergence rate. Moreover, because the training time of the improved one with BN is shorter than that
of the traditional GraphSAINT, the epoch is 150, as can be seen from the solid red line in Figure 2(b),
which is less than 200. Here, it is also clear that the improved GraphSAINT with BN has a better test
accuracy than the improved GraphSAINT with LN.

The next row of Table 2 is the experimental results of the improved GraphSAINT with FLAG.
Although the improvement is less than the improved GraphSAINTwith BN, all the threeMRR values
still have an improvement comparedwith the official results for the traditional GraphSAINT as shown
in Table 2: the training result can reach 0.8880±0.0019, the validation result can reach 0.8165±0.0022,
and the test result can also reach 0.8175±0.0022. Besides, the loss curve of the improved GraphSAINT
with FLAG during training is shown by the solid red line in Figure 2(c). Compared with the blue
dotted line in Figure 2(c), the improved GraphSAINTwith FLAG also has a stable convergence in the
training process, whose convergence rate is slightly slower than the improved one with BN. However,
since the application of FLAG in the traditional GraphSAINT makes the training time longer, the
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Figure 2: The loss curve during training of the improved GraphSAINTs

epoch is 250, as can be seen from the solid red line in Figure 2(c).
The last rowof Table 2 is the results of the improvedGraphSAINTwith a new combination strategy

named BN+FLAG. Considering that both BN and FLAG bring an increase in the test accuracy to
the traditional GraphSAINT, we conduct such an experiment by using the BN+FLAG combination
strategy, and we can see that the training result can reach 0.8997±0.0013, the validation result can
reach 0.8349±0.0010, and the test result can also reach 0.8364±0.0012. It’s a pity that the improved
GraphSAINTwith the BN+FLAG combination strategy has almost the same result of the test accuracy
as the improved GraphSAINTwith BN, whichmeans that the FLAG strategy hardly improves the test
accuracy of the results obtained by the improved GraphSAINTwith BN. Besides, the loss curve of the
improved GraphSAINT with the BN+FLAG combination strategy during training is shown by the
solid red line in Figure 2(d). Although the application of FLAG does not improve the test accuracy of
the results, when compared with the blue dotted line in Figure 2(d), we also find that the improved
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GraphSAINT with the combination strategy achieves a faster convergence rate than the other three
improved GraphSAINTs.

Thus, the effectiveness of our improved GraphSAINTs with the three strategies, that is LN, BN,
and FLAG, are all verified.

5 Conclusions
The stability problem in the training process of GNN is crucial. In this paper, we focus on this stability
problemandpropose the improvedGraphSAINTs by applying the twonormalization techniques, that
is BN and LN, and a GNN trick named FLAG. Experiments show that all the proposed algorithms
improve the robustness of the training process of the traditional GraphSAINT and solve the problem
of instability during training. Besides, the improved algorithmswith BNand FLAG can obtain a better
test accuracy. Moreover, the improved algorithms that apply BN also accelerate the convergence of
themodels. In the future, more attentionwill be paid to the stability of theGNNmodels in the process
of distributed training for large graph datasets.
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